
Details of the MiniBooNE Details of the MiniBooNE 
Oscillation ResultsOscillation Results

Chris Polly, Indiana UniversityChris Polly, Indiana University
Penn State SeminarPenn State Seminar



2Chris Polly, Penn State Seminar, 15 May 2007

University of Alabama Los Alamos National Laboratory
Bucknell University Louisiana State University
University of Cincinnati              University of Michigan
University of Colorado Princeton University
Columbia University Saint Mary’s University of Minnesota
Embry Riddle University              Virginia Polytechnic Institute
Fermilab                                      Western Illinois University
Indiana University Yale University

The MiniBooNE Collaboration

Thanks to Doug Cowen for the invitation...



3Chris Polly, Penn State Seminar, 15 May 2007

Neutrino Oscillations
ν oscillations first postulated by Pontecorvo in 1957, 
based on analogy to kaons.

A non-zero  mass allows for lepton flavor changes.

mass eigenstates ≠ flavor eigenstates:

Flavor composition changes as propagates:

Reducing to simple 2-neutrino mixing:

Many experiments have hunted for oscillations, some have found them!
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Evidence for  oscillations

First evidence came in 1968 from Davis' solar e 
experiment  

found 1/3 of the expected νe from sun

disappearance νe → νx

Δm
12

2   ̴ 810-5 eV2,  sin2(2θ) ~ 0.8

Confirmed by SNO, Super-K, Kamland

New mixing found by Super-K through 
atmospheric νµ oscillations 

found 1/2 as the upward νµ as downward

disappearance νµ → νx

Δm
23

2   ̴ 210-3 eV2,  sin2(2θ) ~ 1.0

Confirmed by IMB, Soudan, K2K, and most 
recently MINOS

Only one unconfirmed observation!
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MiniBooNE's motivation...LSND
——LSND found an excess of νe in νµ beam

Signature: Cerenkov light from e+ with 
delayed n-capture (2.2 MeV)

Excess: 87.9 ± 22.4 ± 6.0 (3.8σ)

Under a 2 mixing hypothesis:
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MiniBooNE's motivation...LSND

Other experiments, i.e. Karmen and Bugey, have 
ruled out portions of the LSND signal

MiniBooNE was designed to cover the entire 
LSND allowed region

——LSND found an excess of νe in νµ beam

Signature: Cerenkov light from e+ with 
delayed n-capture (2.2 MeV)

Excess: 87.9 ± 22.4 ± 6.0 (3.8σ)

Under a 2 mixing hypothesis:
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Interpreting the LSND signal

νe       νµ  ντ

ν3

ν2

ν1

∆m 2
atm~ 2.4x10  –3 eV 2

∆m 2
sol~ 8x10  –5 eV 2

The other two measured mixings fit 
conveniently into a 3-neutrino model

With ∆m13
2 = ∆m12

2 + ∆m23
2, the LSND 

∆m2 ~ 1 eV2 does not fit

'Simplest' explanation...a 4th neutrino
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Interpreting the LSND signal

νe       νµ  ντ

ν3

ν2

ν1

∆m 2
atm~ 2.4x10  –3 eV 2

∆m 2
sol~ 8x10  –5 eV 2

The other two measured mixings fit 
conveniently into a 3-neutrino model

With ∆m13
2 = ∆m12

2 + ∆m23
2, the LSND 

∆m2 ~ 1 eV2 does not fit

'Simplest' explanation...a 4th neutrino

Width of the Z implies 2.994 + 0.012 light 
neutrino flavors

Requires 4th neutrino to be 'sterile' or an 
even more exotic solution

Sterile neutrinos hep-ph/0305255

Neutrino decay hep-ph/0602083

Lorentz/CPT violation hep-ex/0506067

Extra dimensions hep-ph/0504096



9Chris Polly, Penn State Seminar, 15 May 2007

The MiniBooNE design strategy

Start with 8 GeV proton beam from FNAL Booster

Add a 174 kA pulsed horn to gain a needed x 6

Requires running  (not anti-) to get flux

Pions decay to  with E in the 0.8 GeV range

Place detector to preserve LSND L/E:
MiniBooNE: (0.5 km) / (0.8 GeV)
LSND: (0.03 km) / (0.05 GeV)

Detect ν interations in 800T pure mineral oil detector

1280 8” PMTs provide 10% coverage of fiducial volume

240 8” PMTs provide active veto in outer radial shell 

dirt
(~500 m)

target and horn
(174 kA)

+



K+

K0

✶

✶

+

✶

decay region
(50 m) detector

oscillations?

FNAL booster
(8 GeV protons)
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1.6 µs

Simple cuts eliminate random backgrounds

Left: trigger window, no cuts

Right: Simple cuts applied PMT 
hits in veto < 6 and tank > 200 
show clean beam window

Removes cosmic  and their decay 
electrons

Subevent structure (clusters in time) can 
be used for particle identification (PID)

Time structure on right expected for 
most common  interaction in MB:       
 charged-current quasi-elastic 

 CCQE 
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Key points about the signal

LSND oscillation probability is < 0.3% 

After cuts, MiniBooNE has to be able to find 
~300 e CCQE interactions in a sea of 
~150,000  CCQE 

Intrinsic νe background

Actual e produced in the beamline from 
muons and kaons

Irreducible at the event level

E spectrum differs from signal

Mis-identified events

CCQE easy to identify, i.e. 2 “subevents” 
instead of 1.  However, lots of them.

Neutral-current (NC) 0 and radiative  are 
rarer, but harder to separate

Can be reduced with better PID

MiniBooNE is a ratio measurement with the 
 constraining flux X cross-section
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Blind analysis in MiniBooNE

The MiniBooNE signal is small but relatively easy 
to isolate

As data comes in it is classified into 'boxes'

For boxes to be opened to analysis they must be 
shown to have a signal < 1

In the end, 99% of the data were available prior to 
unblinding...necessary to understand errors

Other
Signal
  Box
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MiniBooNE analysis structure

✔ Start with a Geant 4 flux prediction for the  
spectrum from  and K produced at the target 

     
✔ Predict  interactions using Nuance                 

     
✔ Pass final state particles to Geant 3 to model 

particle and light propagation in the tank

✔ Starting with event reconstruction, independent 
analyses form: Boosted Decision Tree (BDT) and 
Track Based Likelihood (TBL)                                     
                                                          

✔ Develop particle ID/cuts to separate signal from 

background                                                        
 

✔ Fit reconstructed E spectrum for oscillations
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Flux Prediction
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 HARP (CERN)
 5%  Beryllium target
 8.9 GeV proton beam momentum

HARP collaboration,
hep-ex/0702024

Data are fit to 
a Sanford-Wang
parameterization.

Modeling pion production
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K+ Data from 10 - 24 GeV.
uses a Feynman scaling
parameterization.

data -- points
dash --total error 
   (fit ⊕ parameterization)

K0 data are also 
parameterized.

Modeling kaon production
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“Intrinsic” e + e sources:
 + → e+   e     (52%)    

 K+  →  e+  e    (29%)
 K0 →  e e         (14%)   
 Other         (  5%)     → e e

                K→  e e

 K→ 

 → 

Antineutrino content: 6%

 e = 0.5%

Final neutrino flux estimation

-

-
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X-Section Model
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D. Casper, NPS, 112 (2002) 161
Nuance Monte Carlo

Comprehensive generator, covers entire E range 

Predicts relative rate of specific  interactions 
from input flux

Expected interaction rates in MiniBooNE (before 
cuts) shown below

Based on world data,  CC shown below right

Also tuned on internal data

 CC World data 

Input flux 
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data/MC~1
across all

angle vs.energy
after fit

Tuning Nuance on internal  CCQE data

From Q2 fits to MB  CCQE data:

MA
eff -- effective axial mass

Elo
SF  -- Pauli Blocking parameter

From electron scattering data:

Eb -- binding energy

pf  -- Fermi momentum

Model describes  CCQE  data well 
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90%+ pure π⁰ sample (mainly 
Δ→Nπ⁰)

Measure rate as function
of momentum

Default MC underpredicts rate 
at low momentum

analysis reaches 1.5 GeV

Δ→Nγ also constrained 
(though to a lesser extent)

Tuning Nuance on internal NC data

Invariant mass
distributions in
momentum bins
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Optical Model
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Light propagation in the detector

Optical model is very complex

Cerenkov, scintillation, fluorescence

PMT Q/t response

Scattering, reflection, prepulses

Overall, about 40 non-trivial parameters

Michel electron t distribution
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Tuning the optical model

Initial optical model defined through many benchtop measurements

Subsequently tuned with in situ sources, examples

Left: Michel e populate entire tank, useful for tuning extinction

Right: NC elastic n interactions below Cerenkov threshold useful 
for distinguishing scintillation from fluorescence

Using Michel electrons...
Using NC elastic  interactions...
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Calibration sources span various energies
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Track-Based Likelihood (TBL)
Reconstruction and Particle ID
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TBL Analysis: Separating e from 

,E

t,x,y,z
light

d ata
MC

Analysis pre-cuts

Only 1 subevent

Veto hits < 6

Tank hits > 200

Radius < 500 cm 

 CCQE events (2 subevent)

Event is a collection of PMT-level info (q,t,x)

Form sophisticated Q and T pdfs, and fit for 7 
track parameters under 2 hypotheses

The track is due to an electron

The track is coming from a muon
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Separating e from 0

E
1
,

1
,

1

t,x,y,z

lights
1

s
2

E
2
,

2
,

2

b
lin

d

Extend fit to include two e-like tracks

Very tenacious fit...8 minutes per event

Nearly 500k CPU hours used
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B
LI
N
D

e
0

Invariant Masse 0

BLIND

Monte Carlo π0 only

log(Le/L)

invariant masssignal
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Checking signal sidebands
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Checking signal sidebands
Region at low log(Le/L)
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Checking signal sidebands
Region at low log(Le/L)

Region at low invariant mass
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BLIND

Monte Carlo π0 only

log(Le/L)
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Checking signal sidebands
Region at low log(Le/L)

Region at low invariant mass

Region in signal, but at high E
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TBL Analysis:  Expected event totals

shower

dirt
escapes

shower

dirt    17
Δ→Nγ  20

ν
e
K    94

ν
e
μ 132

π⁰    62

475 MeV – 1250 MeV

other   33

total  358

LSND best-fit ν
μ
→ν

e   
126

S/sqrt(B)=6.8
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Boosted Decision Tree (BDT) 
Reconstruction and Particle ID
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BDT Reconstruction

Same pre-cuts as TBL (taking R from different reconstruction)

Different reconstruction: 

Treats particles more like point sources, i.e. not as careful about dE/dx

Not as tenacious about getting out of local minima, particularly with 
pion fit

Reconstruction runs nearly 10 times faster

To make up for the simple fit, the BDT analysis relies on a form of 
machine learning, the boosted decision tree.

TBL Resolution:
vertex: 22 cm
direction: 2.8º
energy 11%

BDT Resolution:
vertex: 24 cm
direction: 3.8º
energy 14%

Boosting Input Variables:

Low-level (# tank hits, early light fraction, etc.) 

High-level (Q2, Uz, fit likelihoods, etc.)

Topology (charge in anuli, isotropic light, etc.)

A total of 172 variables were used

All 172 were checked for agreement within 
errors in 5 important 'boxes' ( CCQE, NC 0, 
NC-elastic, Michel decay e, 10% closed)

Boosting Output:  Single 'score', + is signal-like

 CCQE
Examples

UZ = cosz

Evisible

Byron P. Roe, et al., 
NIM A543 (2005) 577.
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BDT Analysis: Signal/background regions

Signal prediction (red) versus all bkgs (gray)
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BDT Analysis: Signal/background regions

Signal prediction (red) versus all bkgs (gray)

Start by looking at data in 'sideband'...region 
immediately adjacent to signal region
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BDT Analysis: Signal/background regions
Signal prediction (red) versus all bkgs (gray)

Start by looking at data in 'sideband'...region 
immediately adjacent to signal region

Satisfied with agreement? Finalize background 
prediction

In 500-1200 MeV range:  603 bkg, LSND 
best-fit ν

μ
→ν

e
 203 S/sqrt(B)=8.3
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Systematic Error Analysis and Results
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 Flux from +/+ decay 6.2 / 4.3           √                √
 Flux from K+ decay   3.3 / 1.0           √      √
 Flux from K0 decay 1.5 / 0.4           √      √ 
 Target/beam models 2.8 / 1.3           √
 -cross section            12.3 / 10.5         √      √

 NC 0 yield 1.8 / 1.5           √     
 Dirt interactions 0.8 / 3.4           √       
 Optical model   6.1 / 10.5         √      √
 DAQ electronics model 7.5 / 10.8         √

Source of uncertainty
on e background

Constrained 
by MB data

Reduced by 
tying e to

TBL/BDT
error in %

Final error budget (diagonals only...greatly simplified)

Every checkmark in this table could 
easily consume a 30 minute talk

All error sources had some in situ 
constraint 

Some reduced by combined fit to  

and e

Errors arise from common uncertainties 
in flux, xsec, and optical model

Reconstruction and PID unique

BDT had higher signal-to-background

TBL more impervious to systematics

About 50% event overlap
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BDT/TBL sensitivity comparison

Sensitivity is determined from 
simulation only (no data yet!)

Decided before unblinding that 
the analysis with higher sensitivity 
would be the final analysis

TBL (solid) is better at high m2

90% CL defined by 2 = 1.64
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After many man-years and CPU-hours...
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Finally we see the data in the signal region...

BDT has a good fit and no sign of an 
excess, in fact the data is low relative to 
the prediction

Also sees an excess at low E, but larger 
normalization error complicates 
interpretation

TBL shows no sign of an excess in the 
analysis region (where the LSND signal is 
expected for the 2 mixing hypothesis)

Visible excess at low E

Neither analysis shows an evidence for e 
appearance in the analysis region
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Fit results mapped into sin2(2) m2 plane

Energy-fit analysis:

solid:  TBL

dashed:  BDT

Independent analyses in good 
agreement

Looks similar to sensitivity because of 
the lack of a signal

Had there been a signal, these curves 
would have curled around and closed 
into contours

MiniBooNE and LSND incompatible at 
a 98% CL for all m2 under a 2 
mixing hypothesis.
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Future work for MiniBooNE
Papers in support of this analysis

NC 0 background measurement

 CCQE analysis

Continued improvements of the  
oscillation analysis

Combined BDT and TBL

More work on reducing systematics

Re-examine low E backgrounds and 
significance of low E excess

Lots of work on cross-sections

MB has more  interactions than 
prior experiments in an energy 
range useful to future  expts.

Event counts before cuts:

Currently running in anti- 
mode for anti- cross sections

TBL Analysis

events
all channels 54k
CC quasielastic 24k
NC elastic 10k

8.9k
1.7k
4.9k
1.8k
1.9k

ν channel

CC π−

CC π0

NC π0

NC π+/

CC/NC DIS, multiπ

events
all channels 810k
CC quasielastic 340k
NC elastic 150k

180k
30k
48k
27k
35k

ν channel

CC π+

CC π0

NC π0

NC π+/

CC/NC DIS, multiπ

6x1020 POT
 mode

2x1020 POT
 mode-
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Backup Slides
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(sequential series of cuts
    based on MC study)

This tree is one of many possibilities...

(Nsignal/Nbkgd)

30,245/16,305

9755/23695 

20455/3417 
9790/12888 

1906/11828 7849/11867 

sig-like
bkgd-like

bkgd-like
sig-like

sig-likebkgd-like

etc.

Variable 1

Variable 2

Variable 3

Decision tree example

Optimal cuts on each variable are 
determined

An event gets a weight of 1 if signal 
-1 if background

Hard to identify backgrounds are 
iteratively given more weight

Many trees built

PID 'score' established from ensemblenegat ive
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For a given source 
of uncertainty,

Errors on a wide range
of parameters 

in the underlying model

For a given source 
of uncertainty,

Errors in bins of 
E

QE

and information on 
the correlations
between bins

What we begin with... ... what we need

Handling uncertainties in the analysis
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TBL:   Reweight MC prediction to match measured  result
      (accounting for systematic error correlations)

Two Approaches

Systematic (and statistical) errors are included in (Mij)-1,

                         where i, j are bins of E
QE 

BDT:  include the correlations of  to e in the error matrix: 

Incorporating the  constraint into the errors
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 MA
QE, elo

sf         6%, 2% (stat + bkg only)
 QE  norm       10%
 QE  shape      function of E

e/ QE         function of E

     
 NC 0 rate              function of 0 mom
 MA

coh, coh ±25%
 Nrate      function of  mom + 7% BF

    

 EB, pF                9 MeV, 30 MeV
s                    10%
 MA

1                 25%
 MA

N                 40%
 DIS                25%

determined from
MiniBooNE
 QE data

determined from
MiniBooNE

 NC  data

determined 
from other 
experiments

(Many are common to  and e and cancel in the fit)

Example: Underlying X-section parameter errors
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• external measurements essential

• finish with μ decay events (low-energy electrons)
(~unlimited supply and fast to simulate)

➔ use a Monte Carlo method
to reduce uncertainty:

➔ compare data/MC events
in relevant distributions
for many allowed models

➔ de-weight disallowed
regions of model space

➔ NC elastic events help out
with scintillation

starting uncertainties in
three of the distributions

(near) ending uncertainties

Extracting the OM systematic error
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number of 
multisims

Number of events passing cuts in bin  500<E
QE<600 MeV

1000 multisims for
K+ production

70 multisims 
Optical Model

red line:
standard MC

“Multisim” approach to assessing systematics
A multisim is defined as a random draw from the underlying parameter that 
is considered allowed

Allowed means the draw does not violate internal or external constraints

Draws are taken from covariance matrices that dictate how parameters are 
allowed to change in combination, imagine Cerenkov and scintillation as 
independent sources of light but requiring the Michel energy to be 
conserved

For flux and X-section multisims can be done via reweighting, optical model 
requires running hit level simulation

e
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Correlations between 
E

QE bins from 
the optical model:

• N is number of events passing cuts 
• MC is standard monte carlo
• represents a given multisim
• M is the total number of multisims
• i,j are E

QE bins

Total error matrix is 
calculated from the sum 
of 9 independent sources

TB: e-only total error matrix
BDT: -e total error matrix

( )( )CV
jj

M
CV
iiij NNNN

M
E 

=

a

a

a

1

1 MC MC

BDT

Optical model error matrix

= 


